Ccmmutty logo
Commutty IT
0 pv1 min read

【初心者向け】ボストン住宅価格の予測【機械学習】

https://cdn.magicode.io/media/notebox/dd1a32ab-a0c6-4a1c-ac96-cb1be61daa1f.jpeg
python
! pip install lightgbm

Requirement already satisfied: lightgbm in /srv/conda/envs/notebook/lib/python3.7/site-packages (3.3.2)
Requirement already satisfied: scipy in /srv/conda/envs/notebook/lib/python3.7/site-packages (from lightgbm) (1.7.3) Requirement already satisfied: wheel in /srv/conda/envs/notebook/lib/python3.7/site-packages (from lightgbm) (0.37.1) Requirement already satisfied: scikit-learn!=0.22.0 in /srv/conda/envs/notebook/lib/python3.7/site-packages (from lightgbm) (0.22.2.post1) Requirement already satisfied: numpy in /srv/conda/envs/notebook/lib/python3.7/site-packages (from lightgbm) (1.19.5) Requirement already satisfied: joblib>=0.11 in /srv/conda/envs/notebook/lib/python3.7/site-packages (from scikit-learn!=0.22.0->lightgbm) (1.1.0)
python
import pandas as pd
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score
from lightgbm import LGBMRegressor
python
boston = load_boston()
data = pd.DataFrame(boston.data)
data.columns = boston.feature_names
data['PRICE'] = boston.target

display(data.head(), data.describe())

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE
0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 396.90 4.98 24.0
1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 396.90 9.14 21.6
2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 392.83 4.03 34.7
3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 394.63 2.94 33.4
4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 396.90 5.33 36.2
CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE
count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000
mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032 12.653063 22.532806
std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 7.141062 9.197104
min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 1.730000 5.000000
25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 6.950000 17.025000
50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 11.360000 21.200000
75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 16.955000 25.000000
max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 37.970000 50.000000
python
X = data.drop(['PRICE'], axis = 1)
y = data['PRICE']
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.2, random_state = 0)

print(len(X_train))
print(len(X_test))

404 102
python
model = LGBMRegressor()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
r2_score(y_test, y_pred)

0.6991383230605068

Discussion

コメントにはログインが必要です。