[34m[1mtrain: [0mweights=yolov5s.pt, cfg=yolov5s.yaml, data=/content/drive/MyDrive/HardHatData/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=50, batch_size=8, imgsz=640, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=/content/drive/MyDrive/HardHatData, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[10], save_period=-1, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
[34m[1mgithub: [0mup to date with https://github.com/ultralytics/yolov5 ✅
YOLOv5 🚀 v6.1-261-g19f33cb Python-3.7.13 torch-1.11.0+cu113 CUDA:0 (Tesla T4, 15110MiB)
[34m[1mhyperparameters: [0mlr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
[34m[1mWeights & Biases: [0mrun 'pip install wandb' to automatically track and visualize YOLOv5 🚀 runs (RECOMMENDED)
[34m[1mTensorBoard: [0mStart with 'tensorboard --logdir /content/drive/MyDrive', view at http://localhost:6006/
Downloading https://ultralytics.com/assets/Arial.ttf to /root/.config/Ultralytics/Arial.ttf...
100% 755k/755k [00:00<00:00, 18.0MB/s]
Downloading https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt to yolov5s.pt...
100% 14.1M/14.1M [00:00<00:00, 136MB/s]
Overriding model.yaml nc=80 with nc=3
from n params module arguments
0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 models.common.C3 [128, 128, 2]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 models.common.C3 [512, 512, 1]
9 -1 1 656896 models.common.SPPF [512, 512, 5]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 21576 models.yolo.Detect [3, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 270 layers, 7027720 parameters, 7027720 gradients
Transferred 342/349 items from yolov5s.pt
[34m[1mAMP: [0mchecks passed ✅
freezing model.0.conv.weight
freezing model.0.bn.weight
freezing model.0.bn.bias
freezing model.1.conv.weight
freezing model.1.bn.weight
freezing model.1.bn.bias
freezing model.2.cv1.conv.weight
freezing model.2.cv1.bn.weight
freezing model.2.cv1.bn.bias
freezing model.2.cv2.conv.weight
freezing model.2.cv2.bn.weight
freezing model.2.cv2.bn.bias
freezing model.2.cv3.conv.weight
freezing model.2.cv3.bn.weight
freezing model.2.cv3.bn.bias
freezing model.2.m.0.cv1.conv.weight
freezing model.2.m.0.cv1.bn.weight
freezing model.2.m.0.cv1.bn.bias
freezing model.2.m.0.cv2.conv.weight
freezing model.2.m.0.cv2.bn.weight
freezing model.2.m.0.cv2.bn.bias
freezing model.3.conv.weight
freezing model.3.bn.weight
freezing model.3.bn.bias
freezing model.4.cv1.conv.weight
freezing model.4.cv1.bn.weight
freezing model.4.cv1.bn.bias
freezing model.4.cv2.conv.weight
freezing model.4.cv2.bn.weight
freezing model.4.cv2.bn.bias
freezing model.4.cv3.conv.weight
freezing model.4.cv3.bn.weight
freezing model.4.cv3.bn.bias
freezing model.4.m.0.cv1.conv.weight
freezing model.4.m.0.cv1.bn.weight
freezing model.4.m.0.cv1.bn.bias
freezing model.4.m.0.cv2.conv.weight
freezing model.4.m.0.cv2.bn.weight
freezing model.4.m.0.cv2.bn.bias
freezing model.4.m.1.cv1.conv.weight
freezing model.4.m.1.cv1.bn.weight
freezing model.4.m.1.cv1.bn.bias
freezing model.4.m.1.cv2.conv.weight
freezing model.4.m.1.cv2.bn.weight
freezing model.4.m.1.cv2.bn.bias
freezing model.5.conv.weight
freezing model.5.bn.weight
freezing model.5.bn.bias
freezing model.6.cv1.conv.weight
freezing model.6.cv1.bn.weight
freezing model.6.cv1.bn.bias
freezing model.6.cv2.conv.weight
freezing model.6.cv2.bn.weight
freezing model.6.cv2.bn.bias
freezing model.6.cv3.conv.weight
freezing model.6.cv3.bn.weight
freezing model.6.cv3.bn.bias
freezing model.6.m.0.cv1.conv.weight
freezing model.6.m.0.cv1.bn.weight
freezing model.6.m.0.cv1.bn.bias
freezing model.6.m.0.cv2.conv.weight
freezing model.6.m.0.cv2.bn.weight
freezing model.6.m.0.cv2.bn.bias
freezing model.6.m.1.cv1.conv.weight
freezing model.6.m.1.cv1.bn.weight
freezing model.6.m.1.cv1.bn.bias
freezing model.6.m.1.cv2.conv.weight
freezing model.6.m.1.cv2.bn.weight
freezing model.6.m.1.cv2.bn.bias
freezing model.6.m.2.cv1.conv.weight
freezing model.6.m.2.cv1.bn.weight
freezing model.6.m.2.cv1.bn.bias
freezing model.6.m.2.cv2.conv.weight
freezing model.6.m.2.cv2.bn.weight
freezing model.6.m.2.cv2.bn.bias
freezing model.7.conv.weight
freezing model.7.bn.weight
freezing model.7.bn.bias
freezing model.8.cv1.conv.weight
freezing model.8.cv1.bn.weight
freezing model.8.cv1.bn.bias
freezing model.8.cv2.conv.weight
freezing model.8.cv2.bn.weight
freezing model.8.cv2.bn.bias
freezing model.8.cv3.conv.weight
freezing model.8.cv3.bn.weight
freezing model.8.cv3.bn.bias
freezing model.8.m.0.cv1.conv.weight
freezing model.8.m.0.cv1.bn.weight
freezing model.8.m.0.cv1.bn.bias
freezing model.8.m.0.cv2.conv.weight
freezing model.8.m.0.cv2.bn.weight
freezing model.8.m.0.cv2.bn.bias
freezing model.9.cv1.conv.weight
freezing model.9.cv1.bn.weight
freezing model.9.cv1.bn.bias
freezing model.9.cv2.conv.weight
freezing model.9.cv2.bn.weight
freezing model.9.cv2.bn.bias
Scaled weight_decay = 0.0005
[34m[1moptimizer:[0m SGD with parameter groups 57 weight (no decay), 60 weight, 60 bias
[34m[1malbumentations: [0mversion 1.0.3 required by YOLOv5, but version 0.1.12 is currently installed
[34m[1mtrain: [0mScanning '/content/drive/MyDrive/HardHatData/train/labels.cache' images and labels... 5269 found, 0 missing, 0 empty, 0 corrupt: 100% 5269/5269 [00:00<?, ?it/s]
[34m[1mval: [0mScanning '/content/drive/MyDrive/HardHatData/test/labels.cache' images and labels... 1766 found, 0 missing, 0 empty, 0 corrupt: 100% 1766/1766 [00:00<?, ?it/s]
Plotting labels to /content/drive/MyDrive/HardHatData2/labels.jpg...
[34m[1mAutoAnchor: [0m6.07 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅
Image sizes 640 train, 640 val
Using 2 dataloader workers
Logging results to [1m/content/drive/MyDrive/HardHatData2[0m
Starting training for 50 epochs...
Epoch gpu_mem box obj cls labels img_size
0/49 0.719G 0.0748 0.04588 0.02218 26 640: 100% 659/659 [02:44<00:00, 4.00it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [03:21<00:00, 1.82s/it]
all 1766 6808 0.707 0.491 0.413 0.172
Epoch gpu_mem box obj cls labels img_size
1/49 2.17G 0.05388 0.03493 0.008085 24 640: 100% 659/659 [02:37<00:00, 4.19it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:20<00:00, 5.51it/s]
all 1766 6808 0.802 0.527 0.525 0.269
Epoch gpu_mem box obj cls labels img_size
2/49 2.17G 0.04844 0.03272 0.006217 32 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.11it/s]
all 1766 6808 0.958 0.605 0.646 0.381
Epoch gpu_mem box obj cls labels img_size
3/49 2.17G 0.04142 0.03146 0.004875 22 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.15it/s]
all 1766 6808 0.957 0.613 0.646 0.399
Epoch gpu_mem box obj cls labels img_size
4/49 2.17G 0.03734 0.03052 0.004159 36 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.15it/s]
all 1766 6808 0.958 0.614 0.645 0.407
Epoch gpu_mem box obj cls labels img_size
5/49 2.17G 0.03475 0.0295 0.003677 26 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.07it/s]
all 1766 6808 0.964 0.614 0.655 0.416
Epoch gpu_mem box obj cls labels img_size
6/49 2.17G 0.03399 0.02981 0.003388 35 640: 100% 659/659 [02:36<00:00, 4.22it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.11it/s]
all 1766 6808 0.96 0.617 0.656 0.422
Epoch gpu_mem box obj cls labels img_size
7/49 2.17G 0.03309 0.02937 0.003309 54 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.13it/s]
all 1766 6808 0.961 0.62 0.655 0.424
Epoch gpu_mem box obj cls labels img_size
8/49 2.17G 0.03232 0.02891 0.002998 40 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.19it/s]
all 1766 6808 0.959 0.624 0.654 0.427
Epoch gpu_mem box obj cls labels img_size
9/49 2.17G 0.03167 0.02868 0.002902 17 640: 100% 659/659 [02:35<00:00, 4.22it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.07it/s]
all 1766 6808 0.958 0.625 0.657 0.433
Epoch gpu_mem box obj cls labels img_size
10/49 2.17G 0.0314 0.02848 0.002689 37 640: 100% 659/659 [02:33<00:00, 4.30it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.19it/s]
all 1766 6808 0.963 0.621 0.654 0.43
Epoch gpu_mem box obj cls labels img_size
11/49 2.17G 0.0308 0.02838 0.002687 45 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.20it/s]
all 1766 6808 0.964 0.62 0.656 0.432
Epoch gpu_mem box obj cls labels img_size
12/49 2.17G 0.03045 0.02808 0.002608 15 640: 100% 659/659 [02:34<00:00, 4.27it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.08it/s]
all 1766 6808 0.959 0.626 0.656 0.434
Epoch gpu_mem box obj cls labels img_size
13/49 2.17G 0.03048 0.02839 0.002552 26 640: 100% 659/659 [02:36<00:00, 4.21it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.20it/s]
all 1766 6808 0.958 0.628 0.656 0.429
Epoch gpu_mem box obj cls labels img_size
14/49 2.17G 0.02999 0.0277 0.002376 54 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.07it/s]
all 1766 6808 0.961 0.627 0.655 0.434
Epoch gpu_mem box obj cls labels img_size
15/49 2.17G 0.02956 0.02743 0.002382 40 640: 100% 659/659 [02:36<00:00, 4.22it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.12it/s]
all 1766 6808 0.96 0.626 0.655 0.437
Epoch gpu_mem box obj cls labels img_size
16/49 2.17G 0.02958 0.02792 0.002423 27 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.18it/s]
all 1766 6808 0.962 0.626 0.656 0.438
Epoch gpu_mem box obj cls labels img_size
17/49 2.17G 0.02919 0.02757 0.002325 34 640: 100% 659/659 [02:33<00:00, 4.28it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:19<00:00, 5.67it/s]
all 1766 6808 0.962 0.627 0.657 0.441
Epoch gpu_mem box obj cls labels img_size
18/49 2.17G 0.02922 0.02755 0.002192 24 640: 100% 659/659 [02:34<00:00, 4.25it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.15it/s]
all 1766 6808 0.959 0.628 0.654 0.438
Epoch gpu_mem box obj cls labels img_size
19/49 2.17G 0.02888 0.02733 0.002031 51 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.12it/s]
all 1766 6808 0.625 0.629 0.654 0.435
Epoch gpu_mem box obj cls labels img_size
20/49 2.17G 0.02886 0.02747 0.002049 26 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.16it/s]
all 1766 6808 0.649 0.645 0.657 0.44
Epoch gpu_mem box obj cls labels img_size
21/49 2.17G 0.02863 0.02701 0.002118 24 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.18it/s]
all 1766 6808 0.958 0.626 0.656 0.44
Epoch gpu_mem box obj cls labels img_size
22/49 2.17G 0.02875 0.02724 0.002231 29 640: 100% 659/659 [02:35<00:00, 4.25it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.09it/s]
all 1766 6808 0.627 0.629 0.654 0.44
Epoch gpu_mem box obj cls labels img_size
23/49 2.17G 0.02843 0.02681 0.001915 29 640: 100% 659/659 [02:34<00:00, 4.26it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.11it/s]
all 1766 6808 0.63 0.626 0.653 0.441
Epoch gpu_mem box obj cls labels img_size
24/49 2.17G 0.02829 0.02689 0.001911 18 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.18it/s]
all 1766 6808 0.641 0.636 0.655 0.442
Epoch gpu_mem box obj cls labels img_size
25/49 2.17G 0.02799 0.02663 0.001944 45 640: 100% 659/659 [02:34<00:00, 4.25it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:19<00:00, 5.77it/s]
all 1766 6808 0.636 0.634 0.654 0.441
Epoch gpu_mem box obj cls labels img_size
26/49 2.17G 0.02803 0.02667 0.001934 26 640: 100% 659/659 [02:33<00:00, 4.29it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:19<00:00, 5.62it/s]
all 1766 6808 0.64 0.638 0.655 0.442
Epoch gpu_mem box obj cls labels img_size
27/49 2.17G 0.02777 0.02616 0.001781 35 640: 100% 659/659 [02:33<00:00, 4.30it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:19<00:00, 5.62it/s]
all 1766 6808 0.673 0.638 0.655 0.442
Epoch gpu_mem box obj cls labels img_size
28/49 2.17G 0.0278 0.02645 0.001832 24 640: 100% 659/659 [02:33<00:00, 4.30it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.14it/s]
all 1766 6808 0.637 0.639 0.654 0.441
Epoch gpu_mem box obj cls labels img_size
29/49 2.17G 0.02765 0.02619 0.001748 28 640: 100% 659/659 [02:35<00:00, 4.25it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:19<00:00, 5.68it/s]
all 1766 6808 0.644 0.639 0.655 0.445
Epoch gpu_mem box obj cls labels img_size
30/49 2.17G 0.02773 0.02605 0.001691 32 640: 100% 659/659 [02:31<00:00, 4.36it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.26it/s]
all 1766 6808 0.63 0.627 0.656 0.443
Epoch gpu_mem box obj cls labels img_size
31/49 2.17G 0.0273 0.02642 0.001675 28 640: 100% 659/659 [02:33<00:00, 4.28it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.07it/s]
all 1766 6808 0.65 0.627 0.656 0.444
Epoch gpu_mem box obj cls labels img_size
32/49 2.17G 0.02747 0.02646 0.001703 46 640: 100% 659/659 [02:34<00:00, 4.26it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.08it/s]
all 1766 6808 0.672 0.632 0.656 0.444
Epoch gpu_mem box obj cls labels img_size
33/49 2.17G 0.02733 0.02634 0.00177 27 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:17<00:00, 6.18it/s]
all 1766 6808 0.69 0.63 0.655 0.444
Epoch gpu_mem box obj cls labels img_size
34/49 2.17G 0.02748 0.0259 0.001736 26 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.15it/s]
all 1766 6808 0.654 0.628 0.656 0.445
Epoch gpu_mem box obj cls labels img_size
35/49 2.17G 0.02704 0.02608 0.00165 55 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.11it/s]
all 1766 6808 0.692 0.628 0.655 0.445
Epoch gpu_mem box obj cls labels img_size
36/49 2.17G 0.02707 0.02627 0.00168 27 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.13it/s]
all 1766 6808 0.648 0.639 0.655 0.446
Epoch gpu_mem box obj cls labels img_size
37/49 2.17G 0.02682 0.02536 0.001517 55 640: 100% 659/659 [02:35<00:00, 4.25it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.16it/s]
all 1766 6808 0.64 0.631 0.654 0.445
Epoch gpu_mem box obj cls labels img_size
38/49 2.17G 0.02683 0.02585 0.001526 28 640: 100% 659/659 [02:35<00:00, 4.25it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.10it/s]
all 1766 6808 0.662 0.626 0.655 0.445
Epoch gpu_mem box obj cls labels img_size
39/49 2.17G 0.02682 0.02559 0.00152 34 640: 100% 659/659 [02:35<00:00, 4.25it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.15it/s]
all 1766 6808 0.65 0.631 0.655 0.445
Epoch gpu_mem box obj cls labels img_size
40/49 2.17G 0.02664 0.0255 0.001429 34 640: 100% 659/659 [02:35<00:00, 4.24it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.16it/s]
all 1766 6808 0.653 0.626 0.655 0.445
Epoch gpu_mem box obj cls labels img_size
41/49 2.17G 0.02687 0.0252 0.00159 34 640: 100% 659/659 [02:36<00:00, 4.20it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.10it/s]
all 1766 6808 0.65 0.626 0.654 0.447
Epoch gpu_mem box obj cls labels img_size
42/49 2.17G 0.02663 0.02602 0.001448 42 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.12it/s]
all 1766 6808 0.648 0.629 0.654 0.446
Epoch gpu_mem box obj cls labels img_size
43/49 2.17G 0.02632 0.02527 0.00146 21 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.11it/s]
all 1766 6808 0.642 0.636 0.654 0.445
Epoch gpu_mem box obj cls labels img_size
44/49 2.17G 0.02619 0.02515 0.001309 36 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 5.96it/s]
all 1766 6808 0.644 0.637 0.654 0.447
Epoch gpu_mem box obj cls labels img_size
45/49 2.17G 0.02639 0.02565 0.00151 27 640: 100% 659/659 [02:38<00:00, 4.16it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.13it/s]
all 1766 6808 0.642 0.639 0.653 0.446
Epoch gpu_mem box obj cls labels img_size
46/49 2.17G 0.0264 0.02544 0.001331 45 640: 100% 659/659 [02:36<00:00, 4.22it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.14it/s]
all 1766 6808 0.654 0.629 0.653 0.446
Epoch gpu_mem box obj cls labels img_size
47/49 2.17G 0.02615 0.02518 0.001314 23 640: 100% 659/659 [02:37<00:00, 4.19it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.12it/s]
all 1766 6808 0.663 0.628 0.654 0.447
Epoch gpu_mem box obj cls labels img_size
48/49 2.17G 0.02595 0.02505 0.00128 13 640: 100% 659/659 [02:35<00:00, 4.23it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.10it/s]
all 1766 6808 0.644 0.63 0.654 0.447
Epoch gpu_mem box obj cls labels img_size
49/49 2.17G 0.026 0.02485 0.001365 39 640: 100% 659/659 [02:35<00:00, 4.22it/s]
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:18<00:00, 6.12it/s]
all 1766 6808 0.641 0.626 0.654 0.448
50 epochs completed in 2.474 hours.
Optimizer stripped from /content/drive/MyDrive/HardHatData2/weights/last.pt, 14.4MB
Optimizer stripped from /content/drive/MyDrive/HardHatData2/weights/best.pt, 14.4MB
Validating /content/drive/MyDrive/HardHatData2/weights/best.pt...
Fusing layers...
YOLOv5s summary: 213 layers, 7018216 parameters, 0 gradients
Class Images Labels P R mAP@.5 mAP@.5:.95: 100% 111/111 [00:21<00:00, 5.15it/s]
all 1766 6808 0.648 0.623 0.654 0.448
head 1766 1803 0.94 0.927 0.963 0.658
helmet 1766 4863 0.962 0.935 0.98 0.676
person 1766 142 0.0407 0.00704 0.0175 0.0101
Results saved to [1m/content/drive/MyDrive/HardHatData2[0m