import numpy as np
np.random.seed(0)
def compute_reciprocals(values):
output = np.empty(len(values))
for i in range(len(values)):
output[i] = 1.0 / values[i]
return output
values = np.random.randint(1, 10, size=5)
compute_reciprocals(values)
%timeit
magic (discussed in Profiling and Timing Code):big_array = np.random.randint(1, 100, size=1000000)
%timeit compute_reciprocals(big_array)
print(compute_reciprocals(values))
print(1.0 / values)
%timeit (1.0 / big_array)
np.arange(5) / np.arange(1, 6)
x = np.arange(9).reshape((3, 3))
2 ** x
x = np.arange(4)
print("x =", x)
print("x + 5 =", x + 5)
print("x - 5 =", x - 5)
print("x * 2 =", x * 2)
print("x / 2 =", x / 2)
print("x // 2 =", x // 2) # floor division
**
operator for exponentiation, and a %
operator for modulus:print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x % 2 = ", x % 2)
-(0.5*x + 1) ** 2
+
operator is a wrapper for the add
function:np.add(x, 2)
Operator | Equivalent ufunc | Description |
---|---|---|
+ | np.add | Addition (e.g., 1 + 1 = 2 ) |
- | np.subtract | Subtraction (e.g., 3 - 2 = 1 ) |
- | np.negative | Unary negation (e.g., -2 ) |
* | np.multiply | Multiplication (e.g., 2 * 3 = 6 ) |
/ | np.divide | Division (e.g., 3 / 2 = 1.5 ) |
// | np.floor_divide | Floor division (e.g., 3 // 2 = 1 ) |
** | np.power | Exponentiation (e.g., 2 ** 3 = 8 ) |
% | np.mod | Modulus/remainder (e.g., 9 % 4 = 1 ) |
x = np.array([-2, -1, 0, 1, 2])
abs(x)
np.absolute
, which is also available under the alias np.abs
:np.absolute(x)
np.abs(x)
x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
np.abs(x)
theta = np.linspace(0, np.pi, 3)
print("theta = ", theta)
print("sin(theta) = ", np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))
x = [-1, 0, 1]
print("x = ", x)
print("arcsin(x) = ", np.arcsin(x))
print("arccos(x) = ", np.arccos(x))
print("arctan(x) = ", np.arctan(x))
x = [1, 2, 3]
print("x =", x)
print("e^x =", np.exp(x))
print("2^x =", np.exp2(x))
print("3^x =", np.power(3, x))
np.log
gives the natural logarithm; if you prefer to compute the base-2 logarithm or the base-10 logarithm, these are available as well:x = [1, 2, 4, 10]
print("x =", x)
print("ln(x) =", np.log(x))
print("log2(x) =", np.log2(x))
print("log10(x) =", np.log10(x))
x = [0, 0.001, 0.01, 0.1]
print("exp(x) - 1 =", np.expm1(x))
print("log(1 + x) =", np.log1p(x))
x
is very small, these functions give more precise values than if the raw np.log
or np.exp
were to be used.scipy.special
.
If you want to compute some obscure mathematical function on your data, chances are it is implemented in scipy.special
.
There are far too many functions to list them all, but the following snippet shows a couple that might come up in a statistics context:from scipy import special
# Gamma functions (generalized factorials) and related functions
x = [1, 5, 10]
print("gamma(x) =", special.gamma(x))
print("ln|gamma(x)| =", special.gammaln(x))
print("beta(x, 2) =", special.beta(x, 2))
# Error function (integral of Gaussian)
# its complement, and its inverse
x = np.array([0, 0.3, 0.7, 1.0])
print("erf(x) =", special.erf(x))
print("erfc(x) =", special.erfc(x))
print("erfinv(x) =", special.erfinv(x))
scipy.special
.
Because the documentation of these packages is available online, a web search along the lines of "gamma function python" will generally find the relevant information.out
argument of the function:x = np.arange(5)
y = np.empty(5)
np.multiply(x, 10, out=y)
print(y)
y = np.zeros(10)
np.power(2, x, out=y[::2])
print(y)
y[::2] = 2 ** x
, this would have resulted in the creation of a temporary array to hold the results of 2 ** x
, followed by a second operation copying those values into the y
array.
This doesn't make much of a difference for such a small computation, but for very large arrays the memory savings from careful use of the out
argument can be significant.reduce
method of any ufunc.
A reduce repeatedly applies a given operation to the elements of an array until only a single result remains.reduce
on the add
ufunc returns the sum of all elements in the array:x = np.arange(1, 6)
np.add.reduce(x)
reduce
on the multiply
ufunc results in the product of all array elements:np.multiply.reduce(x)
accumulate
:np.add.accumulate(x)
np.multiply.accumulate(x)
np.sum
, np.prod
, np.cumsum
, np.cumprod
), which we'll explore in Aggregations: Min, Max, and Everything In Between.outer
method.
This allows you, in one line, to do things like create a multiplication table:x = np.arange(1, 6)
np.multiply.outer(x, x)